Rapamycin suppresses brain aging in senescence-accelerated OXYS rats
نویسندگان
چکیده
Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.
منابع مشابه
Multifaceted aging and rapamycin
Aging is commonly defined as a time-dependent loss of physiological integrity, leading to the decline and impair in organism functions and to the increase of risk for cancer and other major age-associated diseases, finally increasing vulnerability to death [1]. During the last decade the intensive search of anti-aging remedies has lead to the conclusion that both the insulin/IGF-like signaling ...
متن کاملQuantitative trait loci on chromosome 1 for cataract and AMD-like retinopathy in senescence-accelerated OXYS rats
Age-related macular degeneration (AMD) and cataract are common age-related diseases in humans. Previously we showed that senescence-accelerated OXYS rats develop retinopathy and cataract, which are comparable to human AMD and senile cataract. Here we focused on the identification of quantitative trait loci (QTLs), which affect early-onset cataract and retinopathy in OXYS rats, using F2 hybrids ...
متن کاملBrain proteoglycans in postnatal development and during behavior decline in senescence-accelerated OXYS rats.
Proteoglycans (PG) are involved in the brain development as well as in the pathogenesis of age-related neurodegenerative disorders but underlying mechanism remains poorly understood. We showed that senescence-accelerated OXYS rats are suitable model of age-related cerebral dysfunctions. Here the content and composition of PG in the postnatal development and during behavioral decline were examin...
متن کاملAlzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1.
We previously showed that mitochondria-targeted antioxidant SkQ1 (plastoquinonyl-decyltriphenylphosphonium) at nanomolar concentrations is capable of preventing and slowing down some cerebral dysfunctions in accelerated-senescence OXYS rats. Here we demonstrate that OXYS rats develop behavior, learning, and memory deficits against a background of neurodegeneration signs detected by magnetic res...
متن کاملBehavioral effects induced by mitochondria-targeted antioxidant SkQ1 in Wistar and senescence-accelerated OXYS rats.
Mitochondrial dysfunction is involved in aging and in neurodegenerative diseases and, therefore, pharmacological agents that alleviate mitochondrial dysfunction are expected to have neuroprotective effects. Promising in this respect is mitochondrial-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1). We investigated the effects of SkQ1 (250 nmol SkQ1/kg x day with food) on be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013